Since 2023
Hofman, R., Herman, C., Mo, C. Y., Mathai, J., and Marraffini, L. A. (2025) Deep mutational scanning identifies Cas1 and Cas2 variants that enhance type II-A CRISPR-Cas spacer acquisition. Nature Communications 16, 5730. https://doi.org/10.1038/s41467-025-60925-9
Chen, J., Nilsen, E. D., Chitboonthavisuk, C., Mo, C. Y., and Raman, S. (2025). Systematic, high-throughput characterization of bacteriophage gene essentiality on diverse hosts. Cell Host & Microbe. (in press); Preprint: https://www.biorxiv.org/content/10.1101/2024.10.10.617714v1
Tran, M.,* Hernandez Viera, A. J.,* Tran, P. Q., Nilsen, E.D., Tran, L., and Mo, C. Y. (2025). Bacteriophage infection drives loss of β-lactam resistance in methicillin-resistant Staphylococcus aureus. eLife 13:RP102743. https://doi.org/10.7554/eLife.102743.3 *denotes equal contribution.
Mo, C.Y. (2024). If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes. Cell Host & Microbe. 2(11): 1871-1873.
Before 2023
Mo, C.Y., Mathai, J., Rostøl, J.T., Varble, A., Banh, D.V., and Marraffini, L.A. (2021). Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature 592, 611–615. 10.1038/s41586-021-03440-3.
Jia, N., Mo, C.Y., Wang, C., Eng, E.T., Marraffini, L.A., and Patel, D.J. (2019). Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Molecular Cell 73, 264-277.e5. 10.1016/j.molcel.2018.11.007.
Wang, L., Mo, C.Y., Wasserman, M.R., Rostøl, J.T., Marraffini, L.A., and Liu, S. (2019). Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Molecular Cell 73, 278-290.e4. 10.1016/j.molcel.2018.11.008.
Mo, C.Y., and Marraffini, L.A. (2018). If You’d Like to Stop a Type III CRISPR Ribonuclease, Then You Should Put a Ring (Nuclease) on It. Molecular Cell 72, 608–609. 10.1016/j.molcel.2018.10.048.
Culyba, M.J., Kubiak, J.M., Mo, C.Y., Goulian, M., and Kohli, R.M. (2018). Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network. PLoS Genet 14, e1007405. 10.1371/journal.pgen.1007405.
Selwood, T., Larsen, B.J., Mo, C.Y., Culyba, M.J., Hostetler, Z.M., Kohli, R.M., Reitz, A.B., and Baugh, S.D.P. (2018). Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response. Front. Microbiol. 9, 2961. 10.3389/fmicb.2018.02961.
Mo, C.Y., Culyba, M.J., Selwood, T., Kubiak, J.M., Hostetler, Z.M., Jurewicz, A.J., Keller, P.M., Pope, A.J., Quinn, A., Schneck, J., et al. (2018). Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic–Industry Partnership. ACS Infect. Dis. 4, 349–359. 10.1021/acsinfecdis.7b00122.
Kubiak, J.M., Culyba, M.J., Liu, M.Y., Mo, C.Y., Goulian, M., and Kohli, R.M. (2017). A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage. ACS Synth. Biol. 6, 2067–2076. 10.1021/acssynbio.7b00108.
Mo, C.Y., Manning, S.A., Roggiani, M., Culyba, M.J., Samuels, A.N., Sniegowski, P.D., Goulian, M., and Kohli, R.M. (2016). Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics. mSphere 1, e00163-16. 10.1128/mSphere.00163-16.
Culyba, M.J., Mo, C.Y., and Kohli, R.M. (2015). Targets for Combating the Evolution of Acquired Antibiotic Resistance. Biochemistry 54, 3573–3582. 10.1021/acs.biochem.5b00109.
Gajula, K.S., Huwe, P.J., Mo, C.Y., Crawford, D.J., Stivers, J.T., Radhakrishnan, R., and Kohli, R.M. (2014). High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase. Nucleic Acids Research 42, 9964–9975. 10.1093/nar/gku689.
Mo, C.Y., Birdwell, L.D., and Kohli, R.M. (2014). Specificity Determinants for Autoproteolysis of LexA, a Key Regulator of Bacterial SOS Mutagenesis. Biochemistry 53, 3158–3168. 10.1021/bi500026e.