Publications

Since 2023

Hofman, R., Herman, C., Mo, C. Y., Mathai, J., and Marraffini, L. A. (2024)  Deep mutational scanning identifies variants of Cas1 and Cas2 that increase spacer acquisition in type II-A CRISPR-Cas systems. https://www.biorxiv.org/content/10.1101/2024.10.10.617623v1

Chen, J., Nilsen, E. D., Chitboonthavisuk, C., Mo, C. Y., and Raman, S. (2024). Systematic, high-throughput characterization of bacteriophage gene essentiality on diverse hosts. https://www.biorxiv.org/content/10.1101/2024.10.10.617714v1

Tran, M.,* Hernandez Viera, A. J.,* Tran, P. Q., and Mo, C. Y. (2024). Bacteriophage infection drives loss of β-lactam resistance in methicillin-resistant Staphylococcus aureus. https://www.biorxiv.org/content/10.1101/2024.08.19.608629v1. *denotes equal contribution.

Before 2023

Mo, C.Y., Mathai, J., Rostøl, J.T., Varble, A., Banh, D.V., and Marraffini, L.A. (2021). Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature 592, 611–615. 10.1038/s41586-021-03440-3.

Jia, N., Mo, C.Y., Wang, C., Eng, E.T., Marraffini, L.A., and Patel, D.J. (2019). Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Molecular Cell 73, 264-277.e5. 10.1016/j.molcel.2018.11.007.

Wang, L., Mo, C.Y., Wasserman, M.R., Rostøl, J.T., Marraffini, L.A., and Liu, S. (2019). Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Molecular Cell 73, 278-290.e4. 10.1016/j.molcel.2018.11.008.

Mo, C.Y., and Marraffini, L.A. (2018). If You’d Like to Stop a Type III CRISPR Ribonuclease, Then You Should Put a Ring (Nuclease) on It. Molecular Cell 72, 608–609. 10.1016/j.molcel.2018.10.048.

Culyba, M.J., Kubiak, J.M., Mo, C.Y., Goulian, M., and Kohli, R.M. (2018). Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network. PLoS Genet 14, e1007405. 10.1371/journal.pgen.1007405.

Selwood, T., Larsen, B.J., Mo, C.Y., Culyba, M.J., Hostetler, Z.M., Kohli, R.M., Reitz, A.B., and Baugh, S.D.P. (2018). Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response. Front. Microbiol. 9, 2961. 10.3389/fmicb.2018.02961.

Mo, C.Y., Culyba, M.J., Selwood, T., Kubiak, J.M., Hostetler, Z.M., Jurewicz, A.J., Keller, P.M., Pope, A.J., Quinn, A., Schneck, J., et al. (2018). Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic–Industry Partnership. ACS Infect. Dis. 4, 349–359. 10.1021/acsinfecdis.7b00122.

Kubiak, J.M., Culyba, M.J., Liu, M.Y., Mo, C.Y., Goulian, M., and Kohli, R.M. (2017). A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage. ACS Synth. Biol. 6, 2067–2076. 10.1021/acssynbio.7b00108.

Mo, C.Y., Manning, S.A., Roggiani, M., Culyba, M.J., Samuels, A.N., Sniegowski, P.D., Goulian, M., and Kohli, R.M. (2016). Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics. mSphere 1, e00163-16. 10.1128/mSphere.00163-16.

Culyba, M.J., Mo, C.Y., and Kohli, R.M. (2015). Targets for Combating the Evolution of Acquired Antibiotic Resistance. Biochemistry 54, 3573–3582. 10.1021/acs.biochem.5b00109.

Gajula, K.S., Huwe, P.J., Mo, C.Y., Crawford, D.J., Stivers, J.T., Radhakrishnan, R., and Kohli, R.M. (2014). High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase. Nucleic Acids Research 42, 9964–9975. 10.1093/nar/gku689.

Mo, C.Y., Birdwell, L.D., and Kohli, R.M. (2014). Specificity Determinants for Autoproteolysis of LexA, a Key Regulator of Bacterial SOS Mutagenesis. Biochemistry 53, 3158–3168. 10.1021/bi500026e.